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ABSTRACT The complex carbohydrates of terrestrial and marine biomass represent
a rich nutrient source for free-living and mutualistic microbes alike. The enzymatic
saccharification of these diverse substrates is of critical importance for fueling a vari-
ety of complex microbial communities, including marine, soil, ruminant, and mono-
gastric microbiota. Consequently, highly specific carbohydrate-active enzymes, recog-
nition proteins, and transporters are enriched in the genomes of certain species
and are of critical importance in competitive environments. In Bacteroidetes bacteria,
these systems are organized as polysaccharide utilization loci (PULs), which are
strictly regulated, colocalized gene clusters that encode enzyme and protein ensem-
bles required for the saccharification of complex carbohydrates. This review provides
historical perspectives and summarizes key findings in the study of these systems,
highlighting a critical shift from sequence-based PUL discovery to systems-based
analyses combining reverse genetics, biochemistry, enzymology, and structural biol-
ogy to precisely illuminate the molecular mechanisms underpinning PUL function.
The ecological implications of dynamic PUL deployment by key species in the hu-
man gastrointestinal tract are explored, as well as the wider distribution of these
systems in other gut, terrestrial, and marine environments.

KEYWORDS Bacteroidetes, carbohydrate, carbohydrate-active enzymes (CAZymes),
metabolism, microbiome, polysaccharide utilization loci (PULs), polysaccharides,
symbiosis

Complex carbohydrates, in the form of structural and storage polysaccharides,
constitute the largest repository of metabolically accessible carbon in the bio-

sphere (1, 2). The result of primary production, biomass carbohydrates thus present a
ubiquitous energy source to fuel microbial life in both terrestrial and marine ecosys-
tems (Fig. 1). Carbohydrate utilization is inextricably linked with the ability of microbes
to persist in environments as diverse as freshwater, salt water, soil, and animal gastro-
intestinal tracts, particularly where competition for a common, and potentially tempo-
rally limited, pool of nutrients is fierce. The advent of improved culturing tech-
niques and next-generation sequencing has granted us coveted access to a
repository of genetic clues to the metabolic potential of key species across ecosystems
(3–10). We are now in an era in which there is urgent need for post(meta)genomic
functional analysis to elucidate the interplay between carbohydrate catabolism and
microbial ecosystem dynamics.

THE UBIQUITY OF COMPLEX CARBOHYDRATES AND CAZymes

Complex carbohydrates— oligosaccharides and polysaccharides—are composed of
a tremendous diversity of monosaccharide subunits and glycosidic linkages (11–13)
(see Fig. 1 for examples). Therefore, a correspondingly large array of specific enzymes
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is required to effect complete saccharification and feed primary metabolism. Hence,
there is demonstrable enrichment of genes encoding carbohydrate-active enzymes
(CAZymes) in saprophytic and pathogenic microorganisms that attack plant and algal
cell walls (14–17). Despite the complexity of dietary carbohydrates entering animal
gastrointestinal tracts daily, most animal genomes are remarkably bereft of CAZyme-

FIG 1 The ecological distribution of PULs in nature. PULs are found in a variety of microbial communities, highlighting the global role of this polysaccharide
utilization strategy. Each semitransparent box contains a representative bacterial PUL from a distinct microbial ecosystem, as well as the schematic structure
of the target glycan. Clockwise from the top left are the arabinan PUL from an unidentified bacterium from the gut of Pseudocanthotermes militaris (93), the
xylan PUL from Prevotella bryantii (97), the laminarin PUL from Gramella forsetii (101), the xyloglucan PUL from Bacteroides ovatus (78), the chitin PUL from
Flavobacterium johnsoniae (112), and the xyloglucan PUL from Cellvibrio japonicus (126). Genes are colored according to protein function as follows: blue,
endo-GH; cyan, exo-GH; orange, SusD-homologous SGBP; yellow, other SGBP; purple, TBDT; pink, (hybrid) two-component sensor (HTCS/TCS); gray, unknown
or other function (est, esterase; transp, transporter; deam, deaminase). Monosaccharides are represented by Consortium for Functional Glycomics symbols (154).

Meeting Review Journal of Bacteriology

August 2017 Volume 199 Issue 15 e00860-16 jb.asm.org 2

http://jb.asm.org


encoding genes (14, 18, 19). Humans, for example, are intrinsically able to digest only
a small group of relatively simple dietary carbohydrates, namely, starch, lactose, and
sucrose (14). These observations have spurred considerable interest, dating back
decades, in the contribution of complex carbohydrate degradation by intestinal micro-
biota to the nutrition of monogastric and ruminant animals (14, 20–24).

The CAZyme classification initiated by Bernard Henrissat is a key foundation for
genomic, biochemical, and structural studies of the proteins and enzymes involved in
complex carbohydrate degradation (25, 26). The CAZy database presently groups, on
the basis of amino acid sequence, 145 families of glycoside hydrolases (GHs), 103
families of glycosyltransferases, 26 families of polysaccharide lyases (PLs), 16 families of
carbohydrate esterases (CEs), 13 families of redox auxiliary activities, and 81 families of
associated noncatalytic carbohydrate-binding modules (27–31; see also www.cazy.org
and www.cazypedia.org). A key feature of the CAZy classification is the dissection of
open reading frames to reveal discrete, and sometimes complex, CAZyme modular
organization (30), which significantly increases the accuracy of bioinformatic analyses.

The predictive power of the CAZy classification has proven to be remarkably robust.
Within a given family, key active-site residues, the catalytic mechanism, and the overall
three-dimensional fold are strictly conserved (with very few exceptions [32]), while
some families are further grouped into clans on the basis of a conserved catalytic
mechanism and tertiary structure (25). Substrate specificity is, however, less easily
divined because many large families (some with tens of thousands of members) are
“polyspecific,” i.e., encompassing members with distinct activity profiles, often on
structurally related complex carbohydrates. Here, further division into subfamilies has
been shown to be beneficial (28, 33–37). However, because of a comparative paucity of
biochemically and structurally characterized members vis-à-vis the vast bulk of
(meta)genomic sequence data (25-27, 38), bioinformatic predictions of CAZyme func-
tion in the context of microbial community ecology are still largely naive. Therefore,
there is considerable scope to advance the field through a concerted, systems-based
approach that incorporates microbial genetics, biochemistry, enzymology, and struc-
tural biology.

BACTEROIDETES AND THE PUL PARADIGM

Members of the Gram-negative phylum Bacteroidetes are widespread across diverse
ecological niches, including marine, freshwater, and terrestrial habitats, and are notably
abundant in microbiota of the alimentary canal. For example, Bacteroidetes bacteria,
together with the members of the Gram-positive phylum Firmicutes, dominate the
microbiota of the human colon (39, 40). Bacteroidetes bacteria are also profuse in the
guts of plant biomass-consuming nonhuman animals (40–45). In animals, including
humans, Bacteroidetes bacteria provide many symbiotic benefits, notably, the produc-
tion of short-chain fatty acids by hydrolysis and fermentation of otherwise indigestible
complex carbohydrates, which are absorbed and utilized by the epithelial cells of the
gut (40, 46, 47).

A unique feature of Bacteroidetes genomes is the presence of polysaccharide
utilization loci (PULs), a term first coined by Bjursell, Martens, and Gordon in 2006 (48)
to describe clusters of colocalized, coregulated genes, the products of which orches-
trate the detection, sequestration, enzymatic digestion, and transport of complex
carbohydrates (49–51). PULs encode a complement of cell surface glycan-binding
proteins (SGBPs), TonB-dependent transporters (TBDTs), CAZymes (most frequently
GHs, but also PLs and CEs where substrate appropriate), and carbohydrate sensors/
transcriptional regulators. The complexity of PULs often scales with that of their
cognate substrates (Fig. 1) (52, 53) and may include ancillary enzymes such as proteases
(54), sulfatases (55, 56), and phosphatases (57). These elegant systems constitute the
major nutrient acquisition strategy deployed by Bacteroidetes bacteria and thus are
intrinsically linked to the colonization of nutritional niches and the establishment of
microbial ecosystems.
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THE ARCHETYPAL PUL, THE Sus

The first evidence of a concerted molecular system for complex glycan degradation
in Bacteroidetes bacteria was uncovered through pioneering studies of dietary starch
utilization by the human gut symbiont Bacteroides thetaiotaomicron, which were initi-
ated in the 1980s by Abigail Salyers and coworkers. Notably, initial cellular fractionation
studies revealed that key enzymes and starch-binding proteins were individually local-
ized to the cell surface, periplasmic space, and cytoplasm, thus suggesting the presence
of a multiprotein carbohydrate-degrading system spanning both bacterial membranes
(58). Indeed, subsequent studies precisely identified all of the components of this
system, including proteins responsible for recognition and initial hydrolysis of starch at
the outer membrane, translocation of glycans into the periplasm, further hydrolysis to
monosaccharides, and transcriptional regulation (59–66). Together, eight genes were
identified as part of a single gene cluster, collectively named the starch utilization
system (Sus), which established a new paradigm of complex carbohydrate utilization
(49, 51). Presently, the concerted operation of the Sus continues to be dissected
through genetic, biochemical, and structural approaches (67–71) that, together with
Salyers’ seminal studies, outline a general cellular model for the study of other PULs
(Fig. 2).

MOLECULAR ARCHITECTURES OF PUL SUBSYSTEMS

A hallmark of canonical PULs is the presence of at least one sequential pair of susC
and susD homologs (49) that encode an outer membrane TBDT (Fig. 1 and 2, purple)
and an N-terminally lipidated SGBP (Fig. 1 and 2, orange), respectively. In light of the
considerable structural diversity among SGBPs (see below), SusD homologs are referred
to as SGBP-A proteins. Genetic studies have revealed that the TBDT and SGBP-A

FIG 2 Nutritional foraging strategies encoded by PULs and their roles in microbial ecological interactions. (A) In a distributive mechanism, utilization of wheat
arabinoxylan by B. ovatus releases partial breakdown products (PBPs) that diffuse into the extracellular environment and support the growth of B. adolescentis
(79). (B) In contrast, the selfish mechanism employed by B. thetaiotaomicron in the digestion of yeast �-mannans results in the rapid import of extracellular
products into the periplasm, where saccharification is culminated (80). The concerted actions of these two PUL models drive syntrophic and cooperative
networks in the context of the complex microbial environment of the gut microbiota. Proteins are colored as in Fig. 1. Monosaccharides are represented by
Consortium for Functional Glycomics symbols (154).
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proteins are intimately associated; deletion of SGBP-A eliminates or reduces PUL
function, yet growth can be rescued by complementation with SGBP-A variants in
which substrate binding has been eliminated by site-directed mutagenesis (49, 67, 72).
SGBP-A homologs show strong primary, secondary, and globular tertiary structural
conservation, with topological variation in the extended substrate-binding surface
accounting for carbohydrate specificity (72–76). Recent seminal crystal structures have
revealed that SGBP-A homologs form flexible “lids” at the extracellular opening of their
associated TBDTs and further highlight an integral role for SGBPs-A in selective nutrient
transit (77).

Substrate binding is often assisted by one or more structurally distinct SGBPs (e.g.,
SGBP-B) (Fig. 1 and 2, yellow) that may have a specificity identical or complementary to
that of SGBP-A. The lack of sequence conservation of the genes that encode these
proteins often precludes definitive assignment as SusE (or SusF) homologs; hence,
these auxiliary SGBPs are sometimes referred to as SusE positioned (or SusF positioned)
with reference to their relative genetic organization. Despite this absence of sequence
similarity, the crystal structures obtained to date have revealed that these N-terminal
lipoproteins share extended multidomain tertiary structures that present substrate-
binding faces in one or more distal C-terminal domains (70, 72).

Each PUL also contains a complement of CAZymes tasked with the dismantling of
polysaccharides, beginning with the action of one or more cell surface-anchored
endoglycanases (Fig. 1 and 2, blue) (78–80); in the Sus, this role is fulfilled by SusG, a
GH13 endo-�1,4-glucanase (�-amylase) (65, 69). The resulting fragments are actively
shuttled into the periplasmic space by the TBDT (e.g., SusC [61, 64]), where additional
linkage-specific GHs (Fig. 1 and 2, cyan) act to release the component monosaccharides
(or certain disaccharides) for metabolism in the cytosol. In the Sus, SusA (a GH13
�1,4-glucosidase) and SusB (a GH97 �1,6-glucosidase) are sufficient to hydrolyze all of
the linkages in starch oligosaccharides (62, 71), while PULs directed toward more
complex substrates typically have manifold exoglycosidases (reviewed in references 52
and 53; see Fig. 1 and 2 and below for specific examples).

PUL regulation is most commonly mediated by one of three mechanisms, the SusR
sensor/regulator, extracytoplasmic function sigma (ECF-�) factor–anti-�-factor pairs, or
hybrid two-component systems (HTCSs) (Fig. 1 and 2, pink). Other PUL-associated
regulatory mechanisms include LacI, CRP, AraC (non-HTCS), SARP-OmpR, and classic
TCSs (81). SusR is a predicted inner membrane-spanning receptor that binds starch-
derived oligosaccharides (but not glucose) and triggers the upregulation of the re-
maining sus genes (63). Intriguingly, SusR appears to be the exception, rather than the
rule, in the documented PUL catalogue (82). Rather, PUL regulation is most often
orchestrated by ECF-�–anti-� pairs that are commonly associated with PULs targeting
host-derived glycans (83) or HTCS proteins associated with PULs targeting a variety of
plant cell wall carbohydrates (39, 84, 85). Regardless of the regulatory system utilized
by a specific PUL, there generally appears to be a finely tuned interpretation of complex
glycan signals that is necessary for a targeted, dynamic response; with some excep-
tions, monosaccharides are typically not inducers (39, 83, 86–89) and may, in fact,
repress PUL expression (90).

PULOMICS

As introduced above, susC-susD pairs are hallmarks of PULs and have been used to
enumerate PUL complements among the genomes of key human gut symbionts,
including B. thetaiotaomicron (88 PULs), Bacteroides ovatus (126 PULs), and Bacteroides
cellulosilyticus WH2 (113 PULs) (39, 48, 89). The abundance and diversity of PULs have
been well documented as a result of these initiatives, which have enabled the com-
parative analysis of PULs from various gut Bacteroidetes bacteria and provided an
essential foundation to understand nutrient niche colonization and community dynam-
ics. For example, the genomes of B. thetaiotaomicron and B. ovatus both harbor ca. 100
PULs; however, strikingly few homologous PULs are shared between them, suggesting
that these two symbionts have distinct glycan niches (39). Similarly, recent transcrip-
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tomic analyses indicated that B. xylanisolvens dynamically responds to discrete struc-
tures of pectins and xylans through several differentially regulated PULs (91, 92). Such
studies reflect the exquisite nutrient adaptation of individual Bacteroidetes bacteria.

Beyond the human gut, PULs have increasingly been identified in a variety of
Bacteroidetes species (Fig. 1) through (meta)genomic, transcriptomic, and proteomic
approaches (93–96). PULs have been identified in species outside the Bacteroides genus
in diverse environments, including the ruminal Prevotella bryantii (97), the freshwater
dweller Flavobacterium johnsoniae (98), and the gut microbiota of the termite Pseuda-
canthotermes militaris (99). Distinctly, PULs from the gliding soil bacterium Cytophaga
hutchinsonii lack individual susC-susD pairs, but instead, two such pairs are encoded
elsewhere in the genome (100).

The discovery of specialized CAZymes tasked with dismantling unique polysaccha-
rides is particularly well illustrated by the PULs of several marine species that utilize
highly sulfated algal polysaccharides. For example, PULs from Zobellia galactanivorans
(55), Formosa agariphila (56), and Gramella forsetii (101) contain CAZyme portfolios
tuned to the unique monosaccharide residues of algal polysaccharides and, not sur-
prisingly, are also enriched in sulfatases (see also SulfAtlas, a new sulfatase classification
database from the Marine Glycobiology and ABiMS teams at the Station Biologique de
Roscoff [102; http://abims.sb-roscoff.fr/sulfatlas/]).

Recently, the development of automatic prediction tools by the CAZy team has led
to the genesis of the PUL database (PULDB; http://www.cazy.org/PULDB/index.php).
The PULDB presently catalogs ca. 4,000 predicted PULs from �70 Bacteroidetes bacteria,
including Alistipes, Bacteroides, Dysgonomonas, Odoribacter, Parabacteroides, Parapre-
votella, Prevotella, and Tannerella species. A key feature of the PULDB is that it, like the
CAZy database, is anchored by experimentally characterized PULs (81).

INSIGHT FROM INTEGRATED FUNCTIONAL CHARACTERIZATION

Large-scale (meta)genomic approaches have clearly been instrumental in PUL dis-
covery, as well as predicting the metabolic potential of diverse Bacteroidetes bacteria.
However, refined functional characterization at the molecular and cellular levels re-
mains critical for a full understanding of the roles of PULs in microbial communities. In
a few cases, genomic and transcriptomic studies have been coupled with biochemical
analyses of individual CAZymes, e.g., �-xylanases (103–105), arabinofuranosidases (93),
�-glucanases (106, 107), and alginate lyases (108). Recently, a series of high-impact
studies have combined genetic, enzymological, biophysical, and structural techniques
to comprehensively characterize the molecular functions of individual PULs.

The pioneering study deploying this approach described the differential utilization
of the fructans levan [�(2,6) linked] and inulin [�(2,1) linked] by several human-gut
symbiotic Bacteroides species, revealing that each harbors a set of linkage-specific
enzymes that are instrumental in defining nutritional preferences (86). Notably, the
heterologous expression of these enzymes in species that lacked homologous activities
resulted in increased fitness of the recipient on the target polysaccharide, showcasing
that differences in gene content between species can translate to increased fitness on
inaccessible substrates. This work also represents the first structural and functional
information obtained for the HTCS, highlighting the importance of the periplasmic
sensor domain in the binding of small oligosaccharides. Subsequent insightful struc-
tural biology revealed that this binding event was accompanied by a unique “scissor
blade” closing mechanism thought to aid in the transduction of the signal across the
membrane to trigger the upregulation of associated PUL genes (88).

Starch and fructans, discussed above, are comparatively simple storage polysaccha-
rides that are composed of a single monosaccharide repeating unit. One of the first
examples of the comprehensive characterization of a PUL directed toward a more
complex plant cell wall polysaccharide was that of the xyloglucan utilization locus
(XyGUL) from the human gut symbiont B. ovatus (Fig. 1) (78). The saccharification
pathway of this ubiquitous, highly branched dietary glycan was determined through
the biochemical and structural characterization of all eight GHs and two SGBPs from the

Meeting Review Journal of Bacteriology

August 2017 Volume 199 Issue 15 e00860-16 jb.asm.org 6

http://abims.sb-roscoff.fr/sulfatlas/
http://www.cazy.org/PULDB/index.php
http://jb.asm.org


XyGUL, in harness with reverse genetics (72, 78, 109). These studies were instrumental
in highlighting the adaptive evolution of GH cohorts among syntenic XyGULs. Further-
more, these syntenic XyGULs served as diagnostic markers of xyloglucan metabolic
capacity among individual Bacteroides species and across human gut metagenomes
(78).

Subsequently, comprehensive functional studies of PULs targeting other complex
polysaccharides have been reported. A pair of xylan-targeting PULs from B. ovatus,
PUL-XylS and PUL-XylL, was found to encode enzymes tailored for individual plant
�-xylans that varied in their composition and branching (79). Recently, the detailed
genetic, biochemical, and enzyme structural characterization of a galactomannan-
specific PUL from B. ovatus revealed the interplay of two mannan-specific SGBPs, two
GH26 endo-�-mannanases, and a GH36 exo-�-galactosidase in the deconstruction of
this plant cell wall polysaccharide (110, 111). Among environmental bacteria, a complex
chitin utilization locus from Flavobacterium johnsoniae has been extensively function-
ally characterized (112). Notable features of the system include two pairs of SusC/SusD
homologs, a secreted chitinase composed of two GH18 modules separated by a
chitin-binding module, and an intracellular glucosamine-6-phosphate deaminase.
Taken together, these studies highlight the considerable insight systems-based analysis
can bring to PUL structure-function studies in the context of the ecology of a variety of
ecosystems.

In addition to common plant cell wall polysaccharides, specialized PULs devoted to
the utilization of rare polysaccharides act to enhance the catabolic repertoire of
selected gut species. The dynamic effects of the human diet on the adaptive evolution
of the distal gut microbiota were recently highlighted in the seminal “sushi factor”
study, which documented the presence of �-porphyranases (i.e., GH16 and GH86), algal
polysaccharide-specific CAZymes, in the microbiota of Japanese populations (113).
Notably, these CAZymes were found as part of PULs thought to be acquired by the gut
bacterium Bacteroides plebeius via lateral gene transfer from porphyranolytic Z. galac-
tanivorans associated with uncooked edible algae (i.e., nori) (114). Further evidence
suggests that B. plebeius and other human gut Bacteroides spp. may have also acquired
algal polysaccharide utilization genes from marine bacteria (108, 114).

The ability of gut bacteria to adapt to structurally complex dietary polysaccharides
was highlighted by the discovery and detailed characterization of three PULs from B.
thetaiotaomicron involved in the utilization of �-mannans from the yeast cell wall (80).
Yeast residues in the intestine originate from either endogenous yeasts or the con-
sumption of leavened foods and fermented beverages, products of technologies that
have existed for only a few thousand years (57). Detailed biochemical and reverse
genetic analyses of these B. thetaiotaomicron �-mannan and other PULs have been
instrumental in enhancing our understanding of the roles of PUL acquisition in the
evolving landscape of the gut. In this context, it is especially notable that one of the
three B. thetaiotaomicron mannan PULs is located on a mobile element that is struc-
turally similar and homologous to that harboring porphyran utilization genes in B.
plebeius (53).

GIVE AND TAKE: THE ROLES OF GLYCAN UTILIZATION IN GUT ECOLOGY

The coordinated carbohydrate utilization systems of PULs represent an impressive
evolutionary solution for capturing valuable carbon sources in competitive environ-
ments, which avoid the limitations of extracellular systems such as cellulosomes or
freely diffusing enzymes employed by fungi and other bacteria. However, emerging
research suggests that, in some cases, these apparently selfish PUL systems may be
“leaky,” with particular benefit to the community; partial breakdown products (PBPs)
released by the action of certain PULs can be shared with neighboring bacteria and
support the dynamic response of microbial communities (115, 116).

This distributive mechanism has been observed in xylan utilization by B. ovatus,
where simple oligosaccharides produced at the cell surface diffuse into the extracellular
environment and are utilized by Bifidobacterium adolescentis, a species lacking the
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enzymatic machinery to catalyze this initial depolymerization step (Fig. 2A) (79). Inter-
estingly, this form of syntrophy was observed only during the utilization of simple,
linear xylans. These synergistic interactions therefore appear to be glycan and species
specific and may reflect hierarchies in the selective metabolism of substrates. In this
regard, the preferential degradation of some glycans over others is likely to play a
central role in shaping the complex microbial relationships of the microbiota (117, 118).

The PUL-mediated liberation of PBPs contributes to the complex metabolic web of
cross-feeding interactions that has been mapped between several Bacteroidales type
strains (115), although in the context of the entire gut microbiota, these relationships
are likely to be much more complex. For example, in some species, CAZymes are
selectively packaged into outer membrane vesicles and released into the extracellular
environment, where they are thought to mediate the production of free glycan
fragments for use by the greater gut community (115, 119). Remarkably, certain species,
such as B. ovatus, secrete enzymes that are not required for the utilization of glycans
such as inulin by the bacterium itself or by its clonemates; rather, this effort appears to
benefit other species in the gut community (116). This seemingly altruistic act results in
significant fitness benefits for B. ovatus that are realized only in the context of a
complex microbiota.

In contrast to the extensive and complex dynamic relationships that exist between
cohorts of bacteria in the gut, certain species such as B. thetaiotaomicron exhibit
relatively little collaboration during the digestion of complex glycans. This form of
selfish metabolism is deployed by B. thetaiotaomicron during the utilization of yeast
�-mannans, in which manno-oligosaccharides generated at the cell surface are rapidly
imported into the periplasm for further breakdown, conferring no direct benefits on
neighboring species (Fig. 2B) (80). To facilitate this process, surface mannanases appear
to operate at a lower rate than homologous mannanases within the periplasm, ensur-
ing that mass action effects do not impede transport.

As a result of the acquisition of rare carbohydrate-specific PULs and diverse glycan
utilization strategies, glycan “generalists,” or microorganisms capable of metabolizing a
range of glycans, within the gut are endowed with multiple foraging strategies to
ensure their survival in this highly competitive ecosystem.

EXTENDING THE PUL PARADIGM

As discussed above, the concept of the PUL was originally defined in the context of
Bacteroidetes systems containing the hallmark tandem susC-susD homologs encoding
TBDT-SGBP pairs (48, 49, 81). TBDTs are not specific to Bacteroidetes bacteria but are
broadly distributed across Gram-negative bacteria, including alpha- and gammapro-
teobacteria living in association with biomass debris. Inspection of the genomes of such
organisms reveals that TBDT- and CAZyme-encoding genes may be colocalized—
analogous to canonical Bacteroidetes PULs—although susD homologs and sensor/
regulator systems are notably absent (108, 120–122). Despite their limitations, these
TBDT/CAZyme-encoding clusters thus arguably comprise a type of “polysaccharide
utilization locus.” Indeed, the coordinated action of such loci in the utilization of
complex carbohydrates, including xylans and N-glycans, was first demonstrated in the
plant pathogen Xanthomonas campestris pv. campestris (123–125). Arlat and coworkers
thus advanced the term CUT (carbohydrate utilization locus-containing TBDT) to de-
scribe such systems (123).

Recently, an “abbreviated” XyGUL from the soil-dwelling, saprophytic gammapro-
teobacterium Cellvibrio japonicus (Fig. 1) has been the subject of reverse genetic,
biochemical, and structural studies that highlight the concerted action of a TBDT and
three periplasmic, side chain-specific exoglycosidases (126). Vis-à-vis the “complete”
XyGUL of B. ovatus (Fig. 1) (78), the C. japonicus XyGUL lacks genes encoding a keystone
extracellular endoxyloglucanase, which is provided elsewhere in the genome (127, 128).
The lack of genes encoding a SusD (SGBP-A) homolog and a sensor/regulator system in
the C. japonicus XyGUL, both of which are ubiquitous in Bacteroidetes PULs, mirrors
observations in bacteria from other phyla (120). Furthermore, the TBDTs from C.
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japonicus and B. ovatus XyGULs have distinct amino acid sequences, despite being
functionally homologous (50, 126).

Although necessarily distinct in structure from their Gram-negative counterparts,
Gram-positive Firmicutes bacteria also deploy elaborate cell surface-associated systems
for the utilization of soluble and insoluble polysaccharides, especially cellulose and
resistant starch (40, 129–133). Recently, inducible, substrate-specific gene clusters
targeting a variety of plant- and host-based glycans were identified in the genomes of
the human gut symbionts Eubacterium rectale and Roseburia species (134). These
“Gram-positive PULs” (gpPULs) contain a minimum of one CAZyme, a carbohydrate
transport system (most commonly ATP-binding cassette transporters), and a LacI- or
AraC-like transcriptional regulator (134).

In the broader perspective, the identification of colocalized genes encoding
CAZymes and transporters presents a valuable tool for bioinformatic analyses of
complex carbohydrate utilization in bacteria. Continued comprehensive molecular
characterization of all flavors of PUL systems will be crucial for understanding the
evolution of nutrient acquisition across phyla and ecosystems.

CONCLUSION AND FUTURE PERSPECTIVES

Recent studies have clearly demonstrated the importance of combining genetic,
biochemical, and structural tools to fully dissect the function of individual PULs and
reveal their specific roles in mediating the dynamics of carbohydrate utilization in
diverse environments. In turn, well-characterized PULs serve as genetic markers, en-
abling the prediction of complex carbohydrate metabolism with greater reliability. A
picture that has emerged is that individual Bacteroidetes bacteria in complex environ-
ments, such as the human gut, contain partially overlapping sets of PULs, which
indicate both the ability to respond dynamically to nutrient availability and niche
specialization within a web of species. Further, comparison of syntenic PULs across
species highlights the ongoing evolution of PUL specificity through stepwise changes
in CAZyme cohorts (78, 79, 86).

In light of the limited number of biochemically characterized PUL CAZymes, SGBPs,
TBDTs, and sensor-regulators, molecular structure-function studies are only in their
infancy. The generally small number of characterized CAZymes versus available se-
quence data and the limits this places on functional prediction have been discussed
above. With respect to substrate binding and import, the interplay among SGBPs,
TBDTs, and endoglycanases remains to be fully elucidated at the molecular level (68).

Likewise, the mechanisms by which regulatory systems within Bacteroidetes PULs
respond to carbohydrates and how signals are transduced into gene expression are not
fully understood. In particular, a complete structural and functional portrait of these
complex membrane-spanning systems, as well as a detailed understanding of the
genetic signatures targeted by these proteins (135), will help fill a significant gap in our
understanding of how PULs are regulated and may help usher in an era of designer
communities and personalized intestinal medicine (136–138). Recently, a series of cis-
encoded small RNAs were discovered in association with a subset of PULs in Bacteroides
fragilis (139). These molecules are postulated to play a role in the suppression of host
glycan-specific PUL systems in Bacteroides species, potentially adding a new layer of
regulation to the strictly controlled hierarchical expression of these PULs. The role of
monosaccharides in specific feedback inhibition of PUL expression is likewise an
emerging area (90).

Functional genomic studies of PULs (broadly defined here to include all aspects of
molecular characterization from transcriptomics though structural biochemistry) have
provided critical insights into nutrient acquisition strategies and microbial ecological
interactions. These insights will continue to deepen our understanding of microbial
enzyme systems in human and animal nutrition and health, as well as their involvement
in driving fundamental environmental processes such as global carbon cycling. Suc-
cessively, these basic research initiatives have lasting impacts on a variety of industries,
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serving to inform a wave of novel technologies with applications in industrial enzyme
discovery (140, 141) and engineered microbial therapeutics (142–148).

Rapid advances toward next-generation solutions for animal agriculture that ad-
dress losses in productivity, food safety, and/or food security that result from escalating
restrictions on the use of antimicrobial growth promoters are paramount. In this regard,
rigorous evaluation of prebiotic and probiotic outcomes (149) and establishment of
realistic production benchmarks are mandatory before there will be further adoption by
industry. Alternatively, the engineering of intestinal microorganisms, such as chimeric
live vaccines (150, 151), CRISPR-based genome editing (152), and synthetic biology of
secondary metabolism (153), holds vast potential and may ultimately transform how
food is produced in the future.

Collectively, fundamental research on PUL function informs the development of a
range of next-generation technologies aimed at the intentional manipulation of mi-
crobial communities, including bioengineered inducible synbiotic systems for meta-
bolic selection and in vivo targeted delivery of therapeutics.
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